Universal curve of G_{th} – Formulae

E. Martinho, J. Salgado, I.F. Gonçalves: *Universal curve of thermal neutron self-shielding factors in foils, wires, spheres and cylinders*. Journal of Radioanalytical and Nuclear Chemistry **261** (2004) 637-643

$$G_{th}(z) = \frac{1}{1 + \left(\frac{z}{1.029}\right)^{1.009}}$$

with

$$z = y \Sigma_t \left(\frac{\Sigma_a}{\Sigma_t}\right)^{0.85}$$

where y is given by:

Geometry (dimension)	y (cm)
Foils $(thickness = t)$	y = 1.5 t
Wires $(radius = R)$	y = 2 R
Spheres $(radius = R)$	y = R
Cylinders (radius = R; height = h) $(1 \le h/R \le 3)$	$y = 1.6 \frac{Rh}{R+h}$

 Σ_t and Σ_a are, respectively, the total and absorption macroscopic cross-sections averaged over the thermal neutron spectrum.

Note: The self-shielding factor for 2200 m/s neutrons can be estimated by using the corresponding cross sections in the calculation of the variable z.